
Logic

Loops

Mathematics

Text

Data structures

Util

Variables

Functions

Machine Learning

Imports

Processing



Conditional instructions are essential for programming. They make it possible to formulate case differentiations,
such as:

If there is a path to the left, turn left.
If the number of points = 100, press “Good job!”.

The simplest condition is an if block:

When it is executed, the value of the variable x is compared to 100. If it is larger, then “What a large number!” is
output. Otherwise, nothing happens.

It is also possible to indicate that something should happen when the condition is false, as in this example:

As in the previous block, “What a large number!” is output when x > 100. Otherwise “It's not very big’ is output.

An if block may have a do section, but not more than one.

It is also possible to test multiple conditions with a single if block, by adding do else clauses:

Logic
Conditional statements

if blocks

if else blocks

if do else if blocks

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-11/qFTbild1.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-11/zzzbild2.PNG


The block checks first whether x > 100, and outputs “What a large number!” if this is the case. If this is not the
case, it then checks whether x = 42. If so, then it outputs “That is my lucky number!”. Otherwise, nothing
happens.

An if block can have any number of if do sections. The conditions are evaluated from top to bottom, until one of
them is fulfilled, or until there are no more conditions left.

if blocks can have both if do and else if sections:

The else if section guarantees that an action is executed, even if none of the previous conditions is true.

An else if section can also occur after any number of if do sections, including zero, which would then be a
completely normal if do block.

Only the simple if block and the if do block appear in the tool list:

if do else if do else blocks

Block modification

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-11/kHPbild3.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-11/7Qmbild4.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/image-1638372839221.png


To add if do and else clauses, click the (+) symbol. The (-) symbol can be used to remove else if clauses:

Note that the shapes of the blocks permit any number of else if sub-blocks to be added, but only up to one if
block.

Boolean logic is a simple mathematical system with two values:

true
incorrect

Logic blocks in ROBO Pro Coding are generally there to control conditions and loops.

Here is an example:

If the value of x is not greater than 100, then the condition is false, and “It’s not very big.” is output. If the value of
x is not greater than 100, then the condition is false and “It’s not very big.” is output. Boolean values can also be
saved in variables and transmitted to functions, just like numbers, texts, and list values.

If a block expects a Boolean value as an input, then no input will be interpreted as false. Non-Boolean values
cannot be inserted directly where Boolean values are expected, although it is possible (but not advisable) to save
a non-Boolean value in a variable and then insert this into the condition input. This method is not recommended,
and its behavior can change in future versions of ROBO Pro Coding.

An individual block with a drop down list that either indicates true or false can be used to access a Boolean
value:

Boolean logic

Values

Comparative operators

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/image-1638373059561.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild1-e.PNG


There are six comparative operators. Two inputs are entered into each (normally two numbers), and the
comparative operator returns true or false, depending on how the inputs are compared to one another.

The six operators are: equal, not equal, less than, greater than, less than or equal, greater than or equal.

The and block returns true if and only if its two input values are true.

The or block returns true if at least one of its two input values is true.

The not block converts a Boolean input into its opposite. For example, the result of:

is false. 

If there is no input, then the value true is assumed, so that the following block will generate the value false:

However, leaving an input empty is not recommended.

The three-part operator acts like a miniature if do block. It uses three input values The first Boolean condition to
be tested is the first input value, the second input value is the value returned if the test is true, and the third input
value is the value returned if the test is false. In the following example, the variable coloris set to red if the
variable x is less than 10, otherwise the variable coloris set to green.

Logical operators

do

Three-part operator

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518116706.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518117182.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518116894.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518116802.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518116985.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518166030.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild8.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild9.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild10-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild11-e.PNG


A three-part block can always be replaced by an if do block. The following two examples are just the same.   

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild12-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623518306106.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild13-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild14-e.PNG


The “Controller” area contains blocks that control whether other blocks placed inside them are executed. There

are two kinds of control blocks: if do blocks (which are described on a separate page) and blocks that control
how often the action inside them is executed. The latter are called loops, since the action inside them, called the
loop body or body may be repeated multiple times. Each run of a loop is called an iteration.

The repeat continuously block executes the code in the body until the program ends.

The repeat block executes the code in the body as many times ad indicated. The following block, for example,
will output “Hello!” ten times:

Imagine a game in which a player throws a dice and adds up all of the values shown, as long as the total is less
than 30. The following blocks implement this game:

1. A variable named total contains an initial value of 0.
2. The loop starts with a check whether total is less than 30. If so, the blocks in the body are run.
3. A random integer between 1 and 6 is generated (to simulate a dice value) and a variable named diced

 is saved.
4. The thrown (“diced”) number is output.
5. The variable total is increased by the number thrown, or diced.
6. Once the end of the loop is reached, the controller goes back to step 2.

Loops

Blocks for creating loops

repeat continuously

repeat

repeat as long as

https://docs.fischertechnik-cloud.com/books/robo-pro-coding/page/bedingungen
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/RaMbild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild2-e.PNG


After the loop is ended, the controller runs through all of the following blocks (not shown). In the example, the
loop ends after a certain number of random integers between 1 and 6 have been output, and the variable total
 then has the value of the total of these numbers, which is at least 30.

repeat as long as loops repeat their body as long as a condition is fulfilled. Repeat until loops are similar, with
the difference that they repeat the body until a certain condition is fulfilled. The following blocks are equivalent to
the previous example, because the loop runs until total is greater than or equal to 30.

The count from to loop increases the value of a variable, starting with an initial value and ending with a second
value, and in steps from a third value, whereby the body is executed once for each value of the variable. The
following program, for example, outputs the numbers 1, 3, and 5.

As the following two loops show, which each output the numbers 5, 3 and 1, this first value can be greater than
the second. The behavior is the same, regardless of whether the incremental amount (third value) is positive or
negative.

The for each block is similar to the count from to loop, but instead of the loop variables in a numerical
sequence, it uses the values from a list in sequence. The following program outputs each element in the list
“alpha,” “beta,” “gamma”:

repeat until

count from to

for each

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild3-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild4-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild5-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild6-e.PNG


Most loops are run until the abort condition (for repeat blocks) is fulfilled, or until all values for the loop variable
have been taken (for count with and for each loops). Two rarely needed, yet occasionally used blocks offer
additional options for controlling loop behavior. They can be used with any kind of loop, even though the following
example shows their use in the for each loop.

continue with next iteration causes the remaining blocks in the loop body to be skipped, and the next iteration
of the loop to begin.

The following program outputs “alpha” during the first iteration of the loop. During the second iteration, the block 
continue with next iteration is executed, causing the output of “beta” to be skipped. In the last iteration,
“gamma” is printed.

The break out block makes it possible to prematurely exit a loop. The following program outputs “alpha” for the
first iteration, then breaks out of the loop during the second iteration when the loop variable equals “beta.” The
third point in the list is never reached.

Break out blocks

continue with next iteration

Break out

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild7-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild8-e.PNG


https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild9-e.PNG


The blocks in the mathematics category are used to activate calculations. The results of the calculations can be
used, for example, as values for variables. Most mathematic blocks relate to general mathematical calculations,
and should be self-explanatory.

Use the number block to enter any number into your program, or assign this number to a variable as a value. This
program assigns the number 12 to the variable age :

This block has the structure value - operator - value. The available operators are +, -, ÷, × and ^. The operator
can be selected via the drop down menu. It can be applied directly to numbers, or to values of variables.
Example:

This block outputs the result 144 (12^2).

This block applies the type of calculation selected from the drop down menu to the number behind it or the
variable behind it. The available operations are:

Square root,
Sum,
Natural logarithm,
Decadic logarithm,
Exponential functions with the base e (e^1, e^2,...),
Exponential functions with the base 10 (10^1, 10^2,...),
Changing sign (multiplying by -1.

e here is Euler’s number. This block takes the square root of 16 and sets the variable i to the result.

 

Mathematics

Blocks

Facts and Figures

Simple calculations

Specialized calculations

Trigonometric functions

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/Q4obild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/JJSbild2.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/kpjbild3-e.PNG


This block works similarly to the block described above, with the difference that the trigonometric functions sine,
cosine, tangent, and their inverse functions are used. The number indicated or the value of the variable indicated
is therefore inserted into the function selected in the drop down menu, and the result can then be processed in
the program. In addition, there is also the block arctan2 of X: ... Y: ..., which makes it possible to use two real
numbers (to be entered as X and Y) to output a function value for the arctan2 in a range of 360°.

This block works similarly to the number block, however you do not enter the numerical value here yourself.
Instead, frequently used constants (such as ?) are saved here as defaults. The constants can be selected via the
drop down menu.

The remainder of ... block is used to output the remainder of a division. This program assigns the variable 
remainder to the remainder of the devision of 3:2, or 1:

The round ... block can be used to round an entered decimal number of the value of an entered variable to a
whole number. You can choose from three options in the drop down menu:

use “round” for standard rounding (e.g. 4.5 to 5)
use “round up” for rounding up (e.g. 5.1 to 6)
use “round down” for rounding down (e.g. 5.9 to 5).

You can use the ... of the list block to output 

the sum of all values in a list with “sum,”
the smallest value in a list with “min,”
the largest value in a list with “max,”
the average of all values in a list with “average,”
the median of a list with “median,”
the most frequent value in a list with “mode,”
the standard deviation of all values in a list with “standard deviation,”
a random value from a list with “random item”

. You can select all of these options using the drop down menu for the block:

Frequently used constants

Remainder of a division

Round

Evaluating lists

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/ZXKbild4-e.PNG


The constrain ... from ... to block allows you to constrain input values to a certain interval. Before an input value
is processed, a test is conducted to check whether it is in the defined interval. There are three options for
handling an entered value:

The value is in the interval, so it is transmitted without change. 
The value is below the lower limit for the interval, so this lower limit is transmitted.
The value is above the upper limit for the interval, so this upper limit is transmitted.

In this example, the block is used to constrain the value for the variable speed to the speeds supported by the
motor:

The two blocks random number from ... to... and random break  output a random value. The random number
from ... to...  block outputs a number from the defined interval. The block random break, in contrast, outputs a
value between 0.0 (and may include this number) and 1.0 (may not include this number).

Constrain input values

Generate random values

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/hw8bild5-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/3rPbild6-e.PNG


Texts Examples of texts are:

“Thing 1”
“12. March 2010”
“” (empty text)
Text can contain letters (capital or lower case), numbers, punctuation marks, other symbols, and spaces.

The following block creates the text “Hello” and saves it in the variable named greeting:

The block create text with combines the value of the variable greeting and the new text “world” to create the
text “Helloworld.” Please note that there is no space between the two texts, since there was none in the original
texts.

To increase the number of text inputs, click the (+) symbol. To remove the last output, click the (-) symbol.

The block to ... append adds the entered text to the given variable. In this example, it changes the value for the
variable greeting from “Hello” to “Hello, there!”:

The length of block counts the number of characters (letters, numbers, etc.) contained in a text. The length of
“We are #1!” is 12, and the length of the empty text is 0.

Text

Blocks

Creating text

Changing text

Text length

Check for empty text

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/6lRbild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/R7Kbild2-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/9NVbild4-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/aLbbild5-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/hAkbild6-e.PNG


This is empty block checks whether the entered text is empty (the length is 0). The result is true in the first
example, and false in the second example.

These blocks can be used to check whether a text is present in another text, and if so, where. For example, this
block checks for the first occurrence of “e” in “Hello,” and the result is 2:

This one checks for the last occurrence of “e” in Hello, which is also 2:

Regardless of whether the first or last occurrence is selected, this block delivers the result 0, since “Hello” does
not contain a “z.”

This returns “b,” the second letter in “abcde”:

This returns “d,” the next to last letter in “abcde”:

This returns “a,” the first letter in “abcde”:

This returns “e,” the last letter in “abcde”:

Search for text

Extracting text

Extracting a single character

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/6sTbild7-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/ltrbild8-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/qIVbild9-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/P88bild10-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/c02bild11-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/4AWbild12-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/L5Bbild13-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/zPgbild14-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild15-e.PNG


This contains each of the 5 letters in “abcde” with the same probability:

None of them changes the text from which these results are extracted.

The in text ... get substring from block can be used to extract a text range that either starts with:

letter #
letter # from end
first letter

and ends with:

letter #
letter # from end
last letter

In the following example, “abc” is extracted:

This block generates a version of the input text either written in

UPPER CASE (all letters in caps) or
lower case (all letters as lower case), or
Substantive (first letters capitalized, other letters lower case).

The result of the following block is “HELLO”:

Non-alphabetic characters are not affected. Please note that this block does not work on text in languages
without capital and lower case letters, like Chinese.

The following block removes spaces, depending on the settings in the drop down menu (small triangle):

at the start of the text
at the end of the text
on both sides of the text

The result of the following block is “Hi you.”

Extracting a text range

Change text capitalization

Trimming (removing) spaces

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild16-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild17-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild18-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild19-e.PNG


Spaces in the middle of the text are not affected.

The print block causes the input value in the console window to be printed:

It is never sent to the printer, although the name might seem to indicate this.

You can use the formatted text block to output texts with formatted variable content. All place holders {} in the
text are replaced with the content of the variables appended after the text. Formatting can be entered into the
brackets. The formatting {:.1f}, for instance, outputs only the first decimal place in the variable t.

Print text

Output text with formatting

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild20-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/image-1638518243441.png


As in everyday language, in ROBO Pro Coding a list is an ordered collection of elements, such as a “to do” list or
a shopping list. Elements in a list can be of any type, and the same value can appear in a list multiple times.

You can use the create list with block to enter the initial values in a new list. In this example, a list of words is
created and saved in a variable named letters:

We designate this list as [“alpha,” “beta,” “gamma”].

This shows the block for creating a list of numbers:

Here is how to create a list of colors:

It is less common, but possible to create a list of values of different types:

Data structures

Lists

Creating a list

create list with

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/efXbild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/68Dbild2-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/NzYbild3-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/Hhabild4-e.PNG


To change the number of inputs, click or touch the gear symbol. This will open a new window. You can drag
element sub-blocks from the left side of the window to the list block on the right side to add a new input:

While the new element in this example is inserted at the bottom, it can be added anywhere. Similarly, element
sub-blocks that are not desired can be dragged to the left and out of the list block.

You can use the create list with item block to create a list containing the indicated number of copies of an item.
The following blocks, for example, set the variable words on the list [“very,” “very,” “very”].

The value of an is empty block is true if its input is the empty list, and false if it is anything else. Is this input true
? The value of the following block would be false, because the variable color is not empty: It has three items.

Note how similar this is to the is empty block for text.

The value of the length of block is the number of elements that are in the list used as the input. The value of the
following block would be 3, for instance, since color has three elements:

The value of the length of block is the number of items in the list used as the input. The value of the following
block would be 3, for example, although words consists of three copies of the same text:

Note how similar this is to the block length of for the text.

These blocks find the position of an item in a list. The following example has a value of 1, because the first
occurrence of “very” is at the start of the list of words ([“very,” “very,” “very”]).

Change number of inputs

Create list with item

Check the length of a list

is empty

Length of

Searching for items in a list

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/8RObild5-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/yz1bild6-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/Qsbbild7-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/YK0bild8-e.PNG


The result of the following is 3, because the last occurrence of “very” in the words is at position 3.

If the item is not in the list at all, then the result is a value of 0, as in this example:

These blocks behave the same way as the blocks for finding letters in text.

Remember the definition of the list colors:

The following block contains the color blue, because it is the second item in the list (starting from the left):

This one contains green, because it is the second element (starting from the right end):

This contains the first item, red:

This contains the last item, yellow:

This one chooses a random item from the list, with the same probability of returning one of the items red, blue,
green or yellow.

Getting items from a list

Getting a single element

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/dbgbild9-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/hTZbild10-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/qfAbild11-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-06/image-1623519862088.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/QnHbild13-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/wADbild14-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/G7obild15-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/OR5bild16-e.PNG


You can use the drop down menu to change the block in list ... get to the block in list ... get  and remove, which
delivers the same output, but also changes the list:

this example sets the variable first letter to “alpha” and leaves the remaining letters ([“beta,” “gamma”]) in the list.

If you select remove from the drop down menu, the tab at the left of the block will be removed:

Then, the first item from letter will be removed.

The block in list ... get sub-list is similar to the block in list ... get, with the difference that it extracts a sub-list
and not an individual item. There are multiple options to enter the start and end of the sub-list:

Get and remove an item

Removing an entry

Get a sub-list

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/WAXbild17-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/doZbild18-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/9Lgbild19-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/nCFbild20-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild21-e.PNG


In this example, a new list first letters is created. The new list has two items: ["alpha,” "beta"].

Please note that this block does not change the original list.

The block in list ... set replaces the item at a certain point in a list with another item.

The meanings of the individual drop down options are outlined in the previous section.

The following example does two things:

1. The list words is created with 3 items: [“very,” “very,” “very”].
2. The third item in the list is replaced with “good.” The new value of words is [“very,” “very,” “good”]

The in list ... insert at block is accessed via the drop down menu for the in list ... set block:

Adding items to a list

Replacing items in a list

Insert items from a certain point into a list

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild22-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild23-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild24-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild25-e.PNG


It inserts a new item at the indicated point into the list, before the element that was previously located there. The
following example (which builds on an earlier example) does three things:

1. The list words is created with 3 items: [“very,” “very,” “very”].
2. The third item in the list is replaced with “good.” The new value of words is therefore [“very,” “very,”

“good”].
3. The word “Be” is inserted at the start of the list. The final value of words is therefore [“Be,” “very,”

“very,” “good”].

The block make list from text uses a delimiter to divide the given text into parts:

In the example above, a new list will be returned containing three segments of text: "311,” "555" and "2368".

This block make text from list assembles a list into a single text using a delimiter:

The print block in the text category can output lists. The result of the following program is the console output
shown:

Divide character strings and merge lists

Make list from text

Make text from list

Related blocks

Printing a list

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild26-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild27-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild28-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild29-e.PNG


The for each block in the controller category executes an operation for each element in a list. This block, for
example, prints each item in the list individually:

The items in this case are not removed from the original list.

See also the examples for break out blocks.

Complete something for each element in a list

Map

JSON

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild30-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/konsole-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild31-e.PNG
https://docs.fischertechnik-cloud.com/books/robo-pro-coding/page/schleifen


The usage category contains blocks of the following type in ROBO Pro Coding:

Color selection
Wait
Python Code
Start
Function execution

This block serves as an input value if a color is queries (for instance if the camera is completing a color
comparison). You can click or touch the color to choose one of a range of 70 colors.

The block wait [] ... prevents the program from continuing to run for the indicated wait time. You can select the
time unit in the drop down menu (small triangle) as well as the desired pause length in the input field beside it.

In the wait until block, the pause is linked not to the time but to the fulfillment of a condition (such as whether a
button is pressed). The condition is added to the wait until block.

If you would like to integrate existing Python Code into ROBO Pro Coding, you can insert it into the Python Code
 block. The program will then execute everything written in the block in Python. 

The start when block is also linked to a condition. The program in the block body will only start once this
condition is fulfilled.

You can use the execute function ... in a thread to execute the selected function in a separate thread. In some
cases, this measure can allow the program to continue reacting to inputs and to be executed more quickly.

Util

Color selection

Wait

Wait until the time has expired

Wait with condition

Python Code

Start

Function execution



We use the term variable as it is used in mathematics and other programming languages: a named value that can
be changed (varied). Variables can be created in different ways.

Some blocks like count with and for each use a variable and define its values. A traditional IT term for
such variables is loop variables.
User-defined functions (also called “procedures” can define inputs, which can be used to create
variables that can only be used in this function. Such variables are traditionally referred to as
“parameters” or “arguments.”
Users can change variables at any time using the set block. These are traditionally called “global
variables.” They can be used anywhere in the code of ROBO Pro Coding.

When you click the drop down symbol (small triangle) for a variable, the following menu appears:

The menu offers the following options.

display the names of all available variables defined in the program.
“rename variable ...,” e.g. change the name of this variable wherever it appears in the program
(choosing this option will open a query asking for the new name)
“delete variable ...,” e.g. Delete all blocks that refer to this variable, wherever they are in the program.

The set block assigns a value to a variable, and creates the variable if it does not yet exist. For example, this is
how to set the value for the variable age to 12:

The call block delivers a variable saved in a variable without changing it:

Variables

Drop down menu

Blocks

Set

Call

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/Slabild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/mKgbild2-e.PNG


It is possible to write a program containing a call block without a relevant set block, but this is a bad idea.

The change block inserts a number for a variable.

The change block is an abbreviation for the following construct:

Look at the following example code:

The first row of blocks creates a variable named age and sets its initial value to the number 12. The second row
of blocks calls up the value 12, adds 1 to it, and saves the total (13) in the variables. In the last line, the following
message appears: “Congratulations! You are now 13.”

Change

Example

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/BgEbild3.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/Zqobild4-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/2lGbild5-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/6I7bild6-e.PNG


Functions are used to make parts of the code reusable and thereby provide an overarching structure for the code.
If you complete a function block, a new block will appear in the Functions menu with the same name as this
function block. Now, it is possible to simply insert the block with the name of the function in the main program.
When the program is run, this block will lead to the code in the function of the same name, and process this code.

The simple function block can be used to create a function bearing the name entered in the text field. This
function can contain as many variables as desired, which are added using the gear symbol. This function aging 
adds 1 to the variable age:

The function can then be used in the main program:

This block makes it possible to create a function with return value. The return value can then be used in the main
program. Here is an example:

 

Functions

Simple function

Function with return value

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/hz1bild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/ZMwbild2-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/pZybild3-e.PNG


The group "Machine Learning" contains blocks for using with TensorFlow project and the USB camera.

Creates an image analysis for a model in the path on the TXT 4.0 controller.

Creates an object recognition with a standard model "sorting route with AI".

Creates an object identifier for a model in the path on the TXT 4.0 controller.

Analyses an image with object or image recognition. The recognised properties, their probability and, in the case
of object recognition, their position are output. The result of this block can be written into a variable in order to
evaluate it later in the "get value of result item [item]" block. block.

Outputs a single value of a property of the xth result of an image or object analysis. The item can either be the
"process image" block directly or its results from a variable.

Machine Learning

https://git.fischertechnik-cloud.com/ml/machine-learning
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2022-12/bild1.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2022-12/bild2.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2022-12/bild3.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2022-12/bild4.png
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2022-12/bild5.png


Imports contains all functions from self-defined modules in "lib".

Functions are used to make parts of the code reusable and thus to structure the code as a whole.

see "Functions"

Imports


