Loops

The “Controller” area contains blocks that control whether other blocks placed inside them are executed. There

are two kinds of control blocks: if do blocks (which are described on a separate page) and blocks that control
how often the action inside them is executed. The latter are called loops, since the action inside them, called the
loop body or body may be repeated multiple times. Each run of a loop is called an iteration.

Blocks for creating loops

repeat continuously

The repeat continuously block executes the code in the body until the program ends.

repeat

The repeat block executes the code in the body as many times ad indicated. The following block, for example,
will output “Hello!” ten times:

repeat ®@E[) times

do print

repeat as long as

Imagine a game in which a player throws a dice and adds up all of the values shown, as long as the total is less
than 30. The following blocks implement this game:

1. Avariable named total contains an initial value of 0.

2. The loop starts with a check whether total is less than 30. If so, the blocks in the body are run.

3. Arandom integer between 1 and 6 is generated (to simulate a dice value) and a variable named diced
is saved.

The thrown (“diced”) number is output.

The variable total is increased by the number thrown, or diced.

6. Once the end of the loop is reached, the controller goes back to step 2.

set [GicIElto [
Lo while B @l total - | < - 8130
do set[CIXEMto random integer from * &} to * [}

L diced -
change by

S

https://docs.fischertechnik-cloud.com/books/robo-pro-coding/page/bedingungen
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/RaMbild1-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild2-e.PNG

After the loop is ended, the controller runs through all of the following blocks (not shown). In the example, the
loop ends after a certain number of random integers between 1 and 6 have been output, and the variable total
then has the value of the total of these numbers, which is at least 30.

repeat until

repeat as long as loops repeat their body as long as a condition is fulfilled. Repeat until loops are similar, with
the difference that they repeat the body until a certain condition is fulfilled. The following blocks are equivalent to
the previous example, because the loop runs until total is greater than or equal to 30.

set [LcIEMto [
repeat (TXTEN " rTEm 30
do setCETEMto random integer from ® kN to *|;}

L3 diced - |
change S diced - |

count from to

The count from to loop increases the value of a variable, starting with an initial value and ending with a second
value, and in steps from a third value, whereby the body is executed once for each value of the variable. The
following program, for example, outputs the numbers 1, 3, and 5.

count with [[[.588 from *k} to)} by *Fi

As the following two loops show, which each output the numbers 5, 3 and 1, this first value can be greater than
the second. The behavior is the same, regardless of whether the incremental amount (third value) is positive or
negative.

count with [48 from] to =k} by * ¥}

count with [[[L 88 from &} to W -2

for each

The for each block is similar to the count from to loop, but instead of the loop variables in a numerical
sequence, it uses the values from a list in sequence. The following program outputs each element in the list
“alpha,” “beta,” “gamma”:

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild3-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild4-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild5-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild6-e.PNG

for each item [inlist © + — create listwith _ ¢¢ ET[\EY »°
7" ’

Break out blocks

Most loops are run until the abort condition (for repeat blocks) is fulfilled, or until all values for the loop variable
have been taken (for count with and for each loops). Two rarely needed, yet occasionally used blocks offer
additional options for controlling loop behavior. They can be used with any kind of loop, even though the following
example shows their use in the for each loop.

continue with next iteration

continue with next iteration causes the remaining blocks in the loop body to be skipped, and the next iteration
of the loop to begin.

The following program outputs “alpha” during the first iteration of the loop. During the second iteration, the block
continue with next iteration is executed, causing the output of “beta” to be skipped. In the last iteration,
“gamma” is printed.

for each item [l inlist © + — create listwith . < EE) ”
17 9

letter - = Ol beta [2
do continue with next iteration - FaaLly

Break out

The break out block makes it possible to prematurely exit a loop. The following program outputs “alpha” for the
first iteration, then breaks out of the loop during the second iteration when the loop variable equals “beta.” The
third point in the list is never reached.

for eachitem [in list © + - create listwith _ < ET[TEY) »”
6« ”

do (¥ T BN < T
do | LICELEIIEN of loop
else print G0l

—

https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild7-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild8-e.PNG
https://docs.fischertechnik-cloud.com/uploads/images/gallery/2021-12/bild9-e.PNG

Revision #1
Created 21 February 2022 15:50:51 by Admin
Updated 9 January 2023 10:29:05 by Admin

